Hemostasis (Pembekuan Darah)

2 06 2009

Hemostasis merupakan pristiwa penghentian perdarahan akibat putusnya atau robeknya pembuluh darah, sedangkan thrombosis terjadi ketika endothelium yang melapisi pembuluh darah rusak atau hilang. Proses ini mencakup pembekuan darah (koagulasi ) dan melibatkan pembuluh darah, agregasi trombosit serta protein plasma baik yang menyebabkan pembekuan maupun yang melarutkan bekuan.

Pada hemostasis terjadi vasokonstriksi inisial pada pembuluh darah yang cedera sehingga aliran darah di sebelah distal cedera terganggu. Kemudian hemostasis dan thrombosis memiliki 3 fase yang sama:

1. Pembekuan agregat trombosit yang longgar dan sementara pada tempat luka. Trombosit akan mengikat kolagen pada tempat luka pembuluh darah dan diaktifkan oleh thrombin yang terbentuk dalam kaskade pristiwa koagulasi pada tempat yang sama, atau oleh ADP yang dilepaskan trombosit aktif lainnya. Pada pengaktifan, trombosit akan berubah bentuk dan dengan adanya fibrinogen, trombosit kemudian mengadakan agregasi terbentuk sumbat hemostatik ataupun trombos.
2. Pembentukan jarring fibrin yang terikat dengan agregat trombosit sehingga terbentuk sumbat hemostatik atau trombos yang lebih stabil.
3. Pelarutan parsial atau total agregat hemostatik atau trombos oleh plasmin

Tipe trombos :

1. Trombos putih tersusun dari trombosit serta fibrin dan relative kurang mengandung eritrosit (pada tempat luka atau dinding pembuluh darah yang abnormal, khususnya didaerah dengan aliran yang cepat[arteri]).
2. Trombos merah terutama terdiri atas erotrosit dan fibrin. Terbentuk pada daerah dengan perlambatan atau stasis aliran darah dengan atau tanpa cedera vascular, atau bentuk trombos ini dapat terjadi pada tempat luka atau didalam pembuluh darah yang abnormal bersama dengan sumbat trombosit yang mengawali pembentukannya.
3. Endapan fibrin yang tersebar luas dalam kapiler/p.darah yang amat kecil.
Ada dua lintasan yang membentuk bekuan fibrin, yaitu lintasan instrinsik dan ekstrinsik. Kedua lintasan ini tidak bersifat independen walau ada perbedaan artificial yang dipertahankan.

Proses yang mengawali pembentukan bekuan fibrin sebagai respons terhadap cedera jaringan dilaksanakan oleh lintasan ekstrinsik. Lintasan intrinsic pengaktifannya berhubungan dengan suatu permukaan yang bermuatan negative. Lintasan intrinsic dan ekstrinsik menyatu dalam sebuah lintasan terkahir yang sama yang melibatkan pengaktifan protrombin menjadi thrombin dan pemecahan fibrinogen yang dikatalis thrombin untuk membentuk fibrin. Pada pristiwa diatas melibatkan macam jenis protein yaitu dapat diklasifikaskan sebagai berikut:
a. Zimogen protease yang bergantung pada serin dan diaktifkan pada proses koagulasi
b. Kofaktor
c. Fibrinogen
d. Transglutaminase yang menstabilkan bekuan fibrin
e. Protein pengatur dan sejumla protein lainnya

Lintasan intrinsic

Lintasan intinsik melibatkan factor XII, XI, IX, VIII dan X di samping prekalikrein, kininogen dengan berat molekul tinggi, ion Ca2+ dan fosfolipid trombosit. Lintasan ini membentuk factor Xa (aktif).
Lintasan ini dimulai dengan “fase kontak” dengan prekalikrein, kininogen dengan berat molekul tinggi, factor XII dan XI terpajan pada permukaan pengaktif yang bermuatan negative. Secara in vivo, kemungkinan protein tersebut teraktif pada permukaan sel endotel. Kalau komponen dalam fase kontak terakit pada permukaan pengaktif, factor XII akan diaktifkan menjadi factor XIIa pada saat proteolisis oleh kalikrein. Factor XIIa ini akan menyerang prekalikrein untuk menghasilkan lebih banyak kalikrein lagi dengan menimbulkan aktivasi timbale balik. Begitu terbentuk, factor xiia mengaktifkan factor XI menjadi Xia, dan juga melepaskan bradikinin(vasodilator) dari kininogen dengan berat molekul tinggi.

Factor Xia dengan adanya ion Ca2+ mengaktifkan factor IX, menjadi enzim serin protease, yaitu factor IXa. Factor ini selanjutnya memutuskan ikatan Arg-Ile dalam factor X untuk menghasilkan serin protease 2-rantai, yaitu factor Xa. Reaksi yang belakangan ini memerlukan perakitan komponen, yang dinamakan kompleks tenase, pada permukaan trombosit aktif, yakni: Ca2+ dan factor IXa dan factor X. Perlu kita perhatikan bahwa dalam semua reaksi yang melibatkan zimogen yang mengandung Gla (factor II, VII, IX dan X), residu Gla dalam region terminal amino pada molekul tersebut berfungsi sebagai tempat pengikatan berafinitas tinggi untuk Ca2+. Bagi perakitan kompleks tenase, trombosit pertama-tama harus diaktifkan untuk membuka fosfolipid asidik (anionic). Fosfatidil serin dan fosfatoidil inositol yang normalnya terdapat pada sisi keadaan tidak bekerja. Factor VIII, suatu glikoprotein, bukan merupakan precursor protease, tetapi kofaktor yang berfungsi sebagai resepto untuk factor IXa dan X pada permukaan trombosit. Factor VIII diaktifkan oleh thrombin dengan jumlah yang sangat kecil hingga terbentuk factor VIIIa, yang selanjutnya diinaktifkan oleh thrombin dalam proses pemecahan lebih lanjut.

Lintasan Ekstrinsik

Lintasan ekstrinsik melibatkan factor jaringan, factor VII,X serta Ca2+ dan menghasilkan factor Xa. Produksi factor Xa dimulai pada tempat cedera jaringan dengan ekspresi factor jaringan pada sel endotel. Factor jaringan berinteraksi dengan factor VII dan mengaktifkannya; factor VII merupakan glikoprotein yang mengandung Gla, beredar dalam darah dan disintesis di hati. Factor jaringan bekerja sebagai kofaktor untuk factor VIIa dengan menggalakkan aktivitas enzimatik untuk mengaktifkan factor X. factor VII memutuskan ikatan Arg-Ile yang sama dalam factor X yang dipotong oleh kompleks tenase pada lintasan intrinsic. Aktivasi factor X menciptakan hubungan yang penting antara lintasan intrinsic dan ekstrinsik.

Interaksi yang penting lainnya antara lintasan ekstrinsik dan intrinsic adalah bahwa kompleks factor jaringan dengan factor VIIa juga mengaktifkan factor IX dalam lintasan intrinsic. Sebenarna, pembentukan kompleks antara factor jaringan dan factor VIIa kini dipandang sebagai proses penting yang terlibat dalam memulai pembekuan darah secara in vivo. Makna fisiologik tahap awal lintasan intrinsic, yang turut melibatkan factor XII, prekalikrein dan kininogen dengan berat molekul besar. Sebenarnya lintasan intrinsik bisa lebih penting dari fibrinolisis dibandingkan dalam koagulasi, karena kalikrein, factor XIIa dan Xia dapat memotong plasminogen, dan kalikrein dapat mengaktifkanurokinase rantai-tunggal.

Inhibitor lintasan factor jaringan (TFPI: tissue factor fatway inhibitior) merupakan inhibitor fisiologik utama yang menghambat koagulasi. Inhibitor ini berupa protein yang beredar didalam darah dan terikat lipoprotein. TFPI menghambat langsung factor Xa dengan terikat pada enzim tersebut didekat tapak aktifnya. Kemudian kompleks factor Xa-TFPI ini manghambat kompleks factor VIIa-faktor jaringan.
Lntasan Terakhir

Pada lintasan terskhir yang sama, factor Xa yang dihasilkan oleh lintasan intrinsic dak ekstrinsik, akan mengaktifkan protrombin(II) menjadi thrombin (IIa) yang kemudian mengubah fibrinogen menjadi fibrin.

Pengaktifan protrombin terjadi pada permukaan trombosit aktif dan memerlukan perakitan kompelks protrombinase yang terdiri atas fosfolipid anionic platelet, Ca2+, factor Va, factor Xa dan protrombin.

Factor V yang disintesis dihati, limpa serta ginjal dan ditemukan didalam trombosit serta plasma berfungsi sebagai kofaktor dng kerja mirip factor VIII dalam kompleks tenase. Ketika aktif menjadi Va oleh sejumlah kecil thrombin, unsure ini terikat dengan reseptor spesifik pada membrane trombosit dan membentuk suatu kompleks dengan factor Xa serta protrombin. Selanjutnya kompleks ini di inaktifkan oleh kerja thrombin lebih lanjut, dengan demikian akan menghasilkan sarana untuk membatasi pengaktifan protrombin menjadi thrombin. Protrombin (72 kDa) merupakan glikoprotein rantai-tunggal yang disintesis di hati. Region terminal-amino pada protrombin mengandung sepeuluh residu Gla, dan tempat protease aktif yang bergantung pada serin berada dalam region-terminalkarboksil molekul tersebut. Setelah terikat dengan kompleks factor Va serta Xa pada membrane trombosit, protrombin dipecah oleh factor Xa pada dua tapak aktif untuk menghasilkan molekul thrombin dua rantai yang aktif, yang kemudian dilepas dari permukaan trombosit. Rantai A dan B pada thrombin disatukan oleh ikatan disulfide.
Konversi Fibrinogen menjadi Fibrin

Fibrinogen (factor 1, 340 kDa) merupakan glikoprotein plasma yang bersifat dapat larut dan terdiri atas 3 pasang rantai polipeptida nonidentik (Aα,Bβγ)2 yang dihubungkan secara kovalen oleh ikatan disulfda. Rantai Bβ dan y mengandung oligosakarida kompleks yang terikat dengan asparagin. Ketiga rantai tersebut keseluruhannya disintesis dihati: tiga structural yang terlibat berada pada kromosom yang sama dan ekspresinya diatur secara terkoordinasi dalam tubuh manusia. Region terminal amino pada keenam rantai dipertahankan dengan jarak yang rapat oleh sejumlah ikatan disulfide, sementara region terminal karboksil tampak terpisah sehingga menghasilkan molekol memanjang yang sangat asimetrik. Bagian A dan B pada rantai Aa dan Bβ, diberi nama difibrinopeptida A (FPA) dan B (FPB), mempunyai ujung terminal amino pada rantainya masing-masing yang mengandung muatan negative berlebihan sebagai akibat adanya residu aspartat serta glutamate disamping tirosin O-sulfat yang tidak lazim dalam FPB. Muatannegatif ini turut memberikan sifat dapat larut pada fibrinogen dalam plasma dan juga berfungsi untuk mencegah agregasi dengan menimbulkan repulse elektrostatik antara molekul-molekul fibrinogen.

Thrombin (34kDa), yaitu protease serin yang dibentuk oleh kompleks protrobinase, menghidrolisis 4 ikatan Arg-Gly diantara molekul-molekul fibrinopeptida dan bagian α serta β pada rantai Aa dan Bβ fibrinogen. Pelepasan molekul fibrinopeptida oleh thrombin menghasilkan monomer fibrin yang memiliki struktur subunit (αβγ)2. Karena FPA dan FPB masing-masing hanya mengandung 16 dab 14 residu, molwkul fibrin akan mempertahankan 98% residu yang terdapat dalam fibrinogen. Pengeluaran molekul fibrinopeptida akan memajankan tapak pengikatan yang memungkinkan molekul monomer fibrin mengadakan agregasi spontan dengan susunan bergiliran secara teratur hingga terbentuk bekuan fibrin yang tidak larut. Pembentukan polimer fibrin inilah yang menangkap trombosit, sel darah merah dan komponen lainnya sehingga terbentuk trombos merah atau putih. Bekuan fibrin ini mula-mula bersifat agak lemah dan disatukan hanya melalui ikatan nonkovalen antara molekul-molekul monomer fibrin.

Selain mengubah fibrinogen menjadi fibrin, thrombin juga mengubah factor XIII menjadi XIIIa yang merupakan transglutaminase yang sangat spesifik dan membentuk ikatan silan secara kovalen anatr molekul fibrin dengan membentuk ikatan peptide antar gugus amida residu glutamine dan gugus ε-amino residu lisin, sehingga menghasilkan bekuan fibrin yang lebih stabil dengan peningkatan resistensi terhadap proteolisis.

Regulasi Trombin

Begitu thrombin aktif terbentuk dalam proses hemostasis atau thrombosis, konsentrasinya harus dikontrol secara cermat untuk mencegah pembentukan bekuan lebih lanjut atau pengaktifan trombosit. Pengontrolan ini dilakukan melalui 2 cara yaitu:
1. Thrombin beredar dalam darah sebagai prekorsor inaktif, yaitu protrombin. Pada setiap reaksinya, terdapat mekanisme umpan balik yang akan menghasilkan keseimbangan antara aktivasi dan inhibisi.
2. Inaktivasi setiap thrombin yang terbentuk oleh zat inhibitor dalam darah.

Sumber : Biokimia Harper

(sorry fren ngga sempat upload gambar-gambarnya)





Metabolisme Karbohidrat

9 04 2009

Pendahuluan

Kata karbohidrat berasal dari kata karbon dan air. Secara sederhana karbohidrat didefinisikan sebagai polimer gula. Karbohidrat adalah senyawa karbon yang mengandung sejumlah besar gugus hidroksil. Karbohidrat paling sederhana bisa berupa aldehid (disebut polihidroksialdehid atau aldosa) atau berupa keton (disebut polihidroksiketon atau ketosa). Berdasarkan pengertian di atas berarti diketahui bahwa karbohidrat terdiri atas atom C, H dan O. Adapun rumus umum dari karbohidrat adalah:

Cn(H2O)n atau CnH2nOn

Fungsi karbohidrat

Fungsi primer dari karbohidrat adalah sebagai cadangan energi jangka pendek (gula merupakan sumber energi). Fungsi sekunder dari karbohidrat adalah sebagai cadangan energi jangka menengah (pati untuk tumbuhan dan glikogen untuk hewan dan manusia). Fungsi lainnya adalah sebagai komponen struktural sel.

Klasifikasi karbohidrat

Karbohidrat dapat dikelompokkan menurut jumlah unit gula, ukuran dari rantai karbon, lokasi gugus karbonil (-C=O), serta stereokimia.

Berdasarkan jumlah unit gula dalam rantai, karbohidrat digolongkan menjadi 4 golongan utama yaitu:

1. Monosakarida (terdiri atas 1 unit gula)

2. Disakarida (terdiri atas 2 unit gula)

3. Oligosakarida (terdiri atas 3-10 unit gula)

4. Polisakarida (terdiri atas lebih dari 10 unit gula)

Pembentukan rantai karbohidrat menggunakan ikatan glikosida.

Berdasarkan lokasi gugus –C=O, monosakarida digolongkan menjadi 2 yaitu:

1. Aldosa (berupa aldehid)

2. Ketosa (berupa keton)

Klasifikasi karbohidrat menurut lokasi gugus karbonil

Berdasarkan jumlah atom C pada rantai, monosakarida digolongkan menjadi:

1. Triosa (tersusun atas 3 atom C)

2. Tetrosa (tersusun atas 4 atom C)

3. Pentosa (tersusun atas 5 atom C)

4. Heksosa (tersusun atas 6 atom C)

5. Heptosa (tersusun atas 7 atom C)

6. Oktosa (tersusun atas 3 atom C)

Klasifikasi karbohidrat menurut jumlah atom C

Contoh monosakarida

Contoh pertama di atas (sebelah kiri) menunjukkan sebuah monosakarida triosa (memiliki 3 atom C), aldosa (berstruktur aldehid/-COH) sehingga dinamakan gula aldotriosa. Sedangkan contoh kedua (sebelah kanan) menunjukkan sebuah monosakarida heksosa (memiliki 6 atom C), ketosa (berstruktur keton/R-CO-R) sehingga dinamakan gula ketoheksosa.

Berdasarkan stereokimia, monosakarida terbagi menjadi beberapa golongan. Stereokimia adalah studi mengenai susunan spasial dari molekul. Salah satu bagian dari stereokimia adalah stereoisomer. Stereoisomer mengandung pengertian:

1. memiliki kesamaan order dan jenis ikatan

2. memiliki perbedaan susunan spasial

3. memiliki perbedaan properti (sifat).

Enantiomer merupakan pasangan dari stereoisomer. Dalam hal ini terdapat aturan yaitu:

1. Diberi awalan D dan L

2. Keduanya merupakan gambar cermin yang tak mungkin saling tumpang tindih

Gambar-gambar berikut memberikan penjelasan mengenai perbedaan susunan spasial dalam enatiomer.

Ilustrasi untuk enantiomer (perhatikan perbedaan susunan spasial yang ada)

Contoh enantiomer dari gula triosa (perhatikan perbedaan susunan spasial yang ada)

Monosakarida-monosakarida penting

Beberapa monosakarida penting bagi tubuh kita di antaranya adalah D-gliseraldehid, D-glukosa, D-fruktosa, D-galaktosa serta D-ribosa.

1. D-gliseraldehid (karbohidrat paling sederhana)

Karbohidrat ini hanya memiliki 3 atom C (triosa), berupa aldehid (aldosa) sehingga dinamakan aldotriosa.

D-gliseraldehid (perhatikan bahwa gula ini hanya memiliki 3 atom C sehingga disebut paling sederhana)

2. D-glukosa (karbohidrat terpenting dalam diet)

Glukosa merupakan aldoheksosa, yang sering kita sebut sebagai dekstrosa, gula anggur ataupun gula darah. Gula ini terbanyak ditemukan di alam.

D-glukosa (perhatikan bahwa glukosa mengalami siklisasi membentuk struktur cincin)

3. D-fruktosa (termanis dari semua gula)

Gula ini berbeda dengan gula yang lain karena merupakan ketoheksosa.

D-fruktosa (perhatikan bahwa fruktosa mengalami siklisasi membentuk struktur cincin)

4. D-galaktosa (bagian dari susu)

Gula ini tidak ditemukan tersendiri pada sistem biologis, namun merupakan bagian dari disakarida laktosa.

D-galaktosa (perhatikan bahwa galaktosa mengalami siklisasi membentuk struktur cincin)

Perbedaan pokok antara D-glukosa dan D-galaktosa (perhatikan daerah berarsis lingkaran)

5. D-ribosa (digunakan dalam pembentukan RNA)

Karena merupakan penyusun kerangka RNA maka ribosa penting artinya bagi genetika bukan merupakan sumber energi. Jika atom C nomor 2 dari ribosa kehilangan atom O, maka akan menjadi deoksiribosa yang merupakan penyusuna kerangka DNA.

D-ribosa (perhatikan gula ini memiliki 5 atom C)

Disakarida-disakarida penting

Beberapa disakarida penting bagi tubuh kita di antaranya adalah β-maltosa, β-laktosa serta sukrosa.

1. β-maltosa

Disakarida ini tak ditemukan di alam kecuali pada kecambah padi-padian. Maltosa merupakan gabungan dari 2 molekul glukosa.

β-maltosa (ikatan antara kedua monosakarida merupakan ikatan C1-4. Atom C nomor 1 yang tak berikatan dengan glukosa lain dalam posisi beta)

2. β-laktosa

Laktosa sering disebut sebagai gula susu. Disakarida ini tersusun atas glukosa dan galaktosa. Kita tidak dapat menggunakan galaktosa secara langsung, tetapi harus diubah menjadi glukosa.

β-laktosa (ikatan antara kedua monosakarida merupakan ikatan C1-4)

3. Sukrosa

Sukrosa merupakan gula terbanyak yang bisa didapatkan dari tumbuhan. Tumbuhan yang banyak dimanfaatkan karena kandungan sukrosa adalah tebu dan bit.

Sukrosa (berbeda dengan maltosa dan laktosa, ikatan yang menghubungkan kedua monosakarida adalah ikatan C1-2)

Polisakarida-polisakarida penting

Beberapa polisakarida penting bagi tubuh kita di antaranya adalah amilum (pati), glikogen dan selulosa.

1. Amilum

Pati merupakan polisakarida yang berfungsi sebagai cadangan energi bagi tumbuhan. Pati merupakan polimer α-D-glukosa dengan ikatan α (1-4). Kandungan glukosa pada pati bisa mencapai 4000 unit. Ada 2 macam amilum yaitu amilosa (pati berpolimer lurus) dan amilopektin (pati berpolimer bercabang-cabang). Sebagian besar pati merupakan amilopektin.

Struktur amilosa (perhatikan bahwa amilosa tidak bercabang)

Struktur amilopektin (bandingkan dengan amilosa)

2. Glikogen

Glikogen merupakan polimer glukosa dengan ikatan α (1-6). Polisakarida ini merupakan cadangan energi pada hewan dan manusia yang disimpan di hati dan otot sebagai granula. Glikogen serupa dengan amilopektin.

Struktur glikogen (bandingkan dengan amilum)

3. Selulosa

Selulosa tersusun atas rantai glukosa dengan ikatan β (1-4). Selulosa lazim disebut sebagai serat dan merupakan polisakarida terbanyak.

Struktur selulosa yang merupakan polimer dari glukosa (bandingkan dengan pati)

Karbohidrat-karbohidrat lain

Beberapa karbohidrat bergabung dengan komponen lain. Sebagai contoh adalah mukopolisakarida, suatu materi tipis, kental, menyerupai jelly dan melapisi sel.

Stuktur dari mukopolisakarida

Contoh yang lain adalah glikoprotein, suatu protein yang mengikat unit karbohidrat dengan ikatan kovalen. Struktur ini memainkan beberapa peran penting di antaranya dalam proses proteksi imunologis, pembekuan darah, pengenalan sel-sel, serta interaksi dengan bahan kimia lain.

Glikoprotein


Metabolisme karbohidrat

Pada bagian-bagian terdahulu Anda telah mempelajari berbagai macam karbohidrat, antara lain monosakarida, disakarida, oligosakarida serta polisakarida. Karbohidrat siap dikatabolisir menjadi energi jika berbentuk monosakarida. Energi yang dihasilkan berupa Adenosin trifosfat (ATP).

Glukosa merupakan karbohidrat terpenting. Dalam bentuk glukosalah massa karbohidrat makanan diserap ke dalam aliran darah, atau ke dalam bentuk glukosalah karbohidrat dikonversi di dalam hati, serta dari glukosalah semua bentuk karbohidrat lain dalam tubuh dapat dibentuk. Glukosa merupakan bahan bakar metabolik utama bagi jaringan mamalia (kecuali hewan pemamah biak) dan bahan bakar universal bagi janin. Unsur ini diubah menjadi karbohidrat lain dengan fungsi sangat spesifik, misalnya glikogen untuk simpanan, ribose dalam bentuk asam nukleat, galaktosa dalam laktosa susu, dalam senyawa lipid kompleks tertentu dan dalam bentuk gabungan dengan protein, yaitu glikoprotein serta proteoglikan.

Sekilas tentang metabolisme

Peristiwa yang dialami unsur-unsur makanan setelah dicerna dan diserap adalah METABOLISME INTERMEDIAT. Jadi metabolisme intermediat mencakup suatu bidang luas yang berupaya memahami bukan saja lintasan metabolik yang dialami oleh masing-masing molekul, tetapi juga interelasi dan mekanisme yang mengatur arus metabolit melewati lintasan tersebut.

Lintasan metabolisme dapat digolongkan menjadi 3 kategori:

1. Lintasan anabolik (penyatuan/pembentukan)

Ini merupakan lintasan yang digunakan pada sintesis senyawa pembentuk struktur dan mesin tubuh. Salah satu contoh dari kategori ini adalah sintesis protein.

2. Lintasan katabolik (pemecahan)

Lintasan ini meliputi berbagai proses oksidasi yang melepaskan energi bebas, biasanya dalam bentuk fosfat energi tinggi atau unsur ekuivalen pereduksi, seperti rantai respirasi dan fosforilasi oksidatif.

3. Lintasan amfibolik (persimpangan)

Lintasan ini memiliki lebih dari satu fungsi dan terdapat pada persimpangan metabolisme sehingga bekerja sebagai penghubung antara lintasan anabolik dan lintasan katabolik. Contoh dari lintasan ini adalah siklus asam sitrat.

29-1

Siklus asam sitrat sebagai lintasan amfibolik dalam metabolisme (perhatikan jalur persimpangan jalur katabolisme dan anabolisme) (dipetik dari: Murray dkk. Biokimia Harper)

Sifat diet atau makanan menentukan pola dasar metabolisme di dalam tubuh. Mamalia, termasuk manusia harus memproses hasil penyerapan produk-produk pencernaan karbohidrat, lipid dan protein dari makanan. Secara berurutan, produk-produk ini terutama adalah glukosa, asam lemak serta gliserol dan asam amino. Semua produk hasil pencernaan diproses melalui lintasan metaboliknya masing-masing menjadi suatu produk umum yaitu Asetil KoA, yang kemudian akan dioksidasi secara sempurna melalui siklus asam sitrat.

Ilustrasi skematis dari lintasan metabolik dasar

Terdapat beberapa jalur metabolisme karbohidrat baik yang tergolong sebagai katabolisme maupun anabolisme, yaitu glikolisis, oksidasi piruvat, siklus asam sitrat, glikogenesis, glikogenolisis serta glukoneogenesis.

Secara ringkas, jalur-jalur metabolisme karbohidrat dijelaskan sebagai berikut:

1. Glukosa sebagai bahan bakar utama akan mengalami glikolisis (dipecah) menjadi 2 piruvat jika tersedia oksigen. Dalam tahap ini dihasilkan energi berupa ATP.

2. Selanjutnya masing-masing piruvat dioksidasi menjadi asetil KoA. Dalam tahap ini dihasilkan energi berupa ATP.

3. Asetil KoA akan masuk ke jalur persimpangan yaitu siklus asam sitrat. Dalam tahap ini dihasilkan energi berupa ATP.

4. Jika sumber glukosa berlebihan, melebihi kebutuhan energi kita maka glukosa tidak dipecah, melainkan akan dirangkai menjadi polimer glukosa (disebut glikogen). Glikogen ini disimpan di hati dan otot sebagai cadangan energi jangka pendek. Jika kapasitas penyimpanan glikogen sudah penuh, maka karbohidrat harus dikonversi menjadi jaringan lipid sebagai cadangan energi jangka panjang.

5. Jika terjadi kekurangan glukosa dari diet sebagai sumber energi, maka glikogen dipecah menjadi glukosa. Selanjutnya glukosa mengalami glikolisis, diikuti dengan oksidasi piruvat sampai dengan siklus asam sitrat.

6. Jika glukosa dari diet tak tersedia dan cadangan glikogenpun juga habis, maka sumber energi non karbohidrat yaitu lipid dan protein harus digunakan. Jalur ini dinamakan glukoneogenesis (pembentukan glukosa baru) karena dianggap lipid dan protein harus diubah menjadi glukosa baru yang selanjutnya mengalami katabolisme untuk memperoleh energi.

18-5

Beberapa jalur metabolisme karbohidrat

Glikolisis

Glikolisis berlangsung di dalam sitosol semua sel. Lintasan katabolisme ini adalah proses pemecahan glukosa menjadi:

1. asam piruvat, pada suasana aerob (tersedia oksigen)

2. asam laktat, pada suasana anaerob (tidak tersedia oksigen)

Glikolisis merupakan jalur utama metabolisme glukosa agar terbentuk asam piruvat, dan selanjutnya asetil-KoA untuk dioksidasi dalam siklus asam sitrat (Siklus Kreb’s). Selain itu glikolisis juga menjadi lintasan utama metabolisme fruktosa dan galaktosa.

Keseluruhan persamaan reaksi untuk glikolisis yang menghasilkan laktat adalah:

Glukosa + 2ADP +2Pi à 2L(+)-Laktat +2ATP +2H2O

Secara rinci, tahap-tahap dalam lintasan glikolisis adalah sebagai berikut (pada setiap tahap, lihat dan hubungkan dengan Gambar Lintasan detail metabolisme karbohidrat):

1. Glukosa masuk lintasan glikolisis melalui fosforilasi menjadi glukosa-6 fosfat dengan dikatalisir oleh enzim heksokinase atau glukokinase pada sel parenkim hati dan sel Pulau Langerhans pancreas. Proses ini memerlukan ATP sebagai donor fosfat. ATP bereaksi sebagai kompleks Mg-ATP. Terminal fosfat berenergi tinggi pada ATP digunakan, sehingga hasilnya adalah ADP. (-1P)

Reaksi ini disertai kehilangan energi bebas dalam jumlah besar berupa kalor, sehingga dalam kondisi fisiologis dianggap irrevesibel. Heksokinase dihambat secara alosterik oleh produk reaksi glukosa 6-fosfat.

Mg2+

Glukosa + ATP à glukosa 6-fosfat + ADP

2. Glukosa 6-fosfat diubah menjadi Fruktosa 6-fosfat dengan bantuan enzim fosfoheksosa isomerase dalam suatu reaksi isomerasi aldosa-ketosa. Enzim ini hanya bekerja pada anomer µ-glukosa 6-fosfat.

µ-D-glukosa 6-fosfat « µ-D-fruktosa 6-fosfat

3. Fruktosa 6-fosfat diubah menjadi Fruktosa 1,6-bifosfat dengan bantuan enzim fosfofruktokinase. Fosfofruktokinase merupakan enzim yang bersifat alosterik sekaligus bisa diinduksi, sehingga berperan penting dalam laju glikolisis. Dalam kondisi fisiologis tahap ini bisa dianggap irreversible. Reaksi ini memerlukan ATP sebagai donor fosfat, sehingga hasilnya adalah ADP.(-1P)

µ-D-fruktosa 6-fosfat + ATP « D-fruktosa 1,6-bifosfat

4. Fruktosa 1,6-bifosfat dipecah menjadi 2 senyawa triosa fosfat yaitu gliserahdehid 3-fosfat dan dihidroksi aseton fosfat. Reaksi ini dikatalisir oleh enzim aldolase (fruktosa 1,6-bifosfat aldolase).

D-fruktosa 1,6-bifosfat« D-gliseraldehid 3-fosfat + dihidroksiaseton fosfat

5. Gliseraldehid 3-fosfat dapat berubah menjadi dihidroksi aseton fosfat dan sebaliknya (reaksi interkonversi). Reaksi bolak-balik ini mendapatkan katalisator enzim fosfotriosa isomerase.

D-gliseraldehid 3-fosfat « dihidroksiaseton fosfat

6. Glikolisis berlangsung melalui oksidasi Gliseraldehid 3-fosfat menjadi 1,3-bifosfogliserat, dan karena aktivitas enzim fosfotriosa isomerase, senyawa dihidroksi aseton fosfat juga dioksidasi menjadi 1,3-bifosfogliserat melewati gliseraldehid 3-fosfat.

D-gliseraldehid 3-fosfat + NAD+ + Pi« 1,3-bifosfogliserat + NADH + H+

Enzim yang bertanggung jawab terhadap oksidasi di atas adalah gliseraldehid 3-fosfat dehidrogenase, suatu enzim yang bergantung kepada NAD.

Atom-atom hydrogen yang dikeluarkan dari proses oksidasi ini dipindahkan kepada NAD+ yang terikat pada enzim. Pada rantai respirasi mitokondria akan dihasilkan tiga fosfat berenergi tinggi. (+3P)

Catatan:

Karena fruktosa 1,6-bifosfat yang memiliki 6 atom C dipecah menjadi Gliseraldehid 3-fosfat dan dihidroksi aseton fosfat yang masing-masing memiliki 3 atom C, dengan demikian terbentuk 2 molekul gula yang masing-masing beratom C tiga (triosa). Jika molekul dihidroksiaseton fosfat juga berubah menjadi 1,3-bifosfogliserat, maka dari 1 molekul glukosa pada bagian awal, sampai dengan tahap ini akan menghasilkan 2 x 3P = 6P. (+6P)

7. Energi yang dihasilkan dalam proses oksidasi disimpan melalui pembentukan ikatan sulfur berenergi tinggi, setelah fosforolisis, sebuah gugus fosfat berenergi tinggi dalam posisi 1 senyawa 1,3 bifosfogliserat. Fosfat berenergi tinggi ini ditangkap menjadi ATP dalam reaksi lebih lanjut dengan ADP, yang dikatalisir oleh enzim fosfogliserat kinase. Senyawa sisa yang dihasilkan adalah 3-fosfogliserat.

1,3-bifosfogliserat + ADP « 3-fosfogliserat + ATP

Catatan:

Karena ada dua molekul 1,3-bifosfogliserat, maka energi yang dihasilkan adalah 2 x 1P = 2P. (+2P)

8. 3-fosfogliserat diubah menjadi 2-fosfogliserat dengan dikatalisir oleh enzim fosfogliserat mutase. Senyawa 2,3-bifosfogliserat (difosfogliserat, DPG) merupakan intermediate dalam reaksi ini.

3-fosfogliserat « 2-fosfogliserat

9. 2-fosfogliserat diubah menjadi fosfoenol piruvat (PEP) dengan bantuan enzim enolase. Reaksi ini melibatkan dehidrasi serta pendistribusian kembali energi di dalam molekul, menaikkan valensi fosfat dari posisi 2 ke status berenergi tinggi.

Enolase dihambat oleh fluoride, suatu unsure yang dapat digunakan jika glikolisis di dalam darah perlu dicegah sebelum kadar glukosa darah diperiksa. Enzim ini bergantung pada keberadaan Mg2+ atau Mn2+.

2-fosfogliserat « fosfoenol piruvat + H2O

10. Fosfat berenergi tinggi PEP dipindahkan pada ADP oleh enzim piruvat kinase sehingga menghasilkan ATP. Enol piruvat yang terbentuk dalam reaksi ini mengalami konversi spontan menjadi keto piruvat. Reaksi ini disertai kehilangan energi bebas dalam jumlah besar sebagai panas dan secara fisiologis adalah irreversible.

Fosfoenol piruvat + ADP à piruvat + ATP

Catatan:

Karena ada 2 molekul PEP maka terbentuk 2 molekul enol piruvat sehingga total hasil energi pada tahap ini adalah 2 x 1P = 2P. (+2P)

11. Jika keadaan bersifat anaerob (tak tersedia oksigen), reoksidasi NADH melalui pemindahan sejumlah unsure ekuivalen pereduksi akan dicegah. Piruvat akan direduksi oleh NADH menjadi laktat. Reaksi ini dikatalisir oleh enzim laktat dehidrogenase.

Piruvat + NADH + H+ à L(+)-Laktat + NAD+

Dalam keadaan aerob, piruvat diambil oleh mitokondria, dan setelah konversi menjadi asetil-KoA, akan dioksidasi menjadi CO2 melalui siklus asam sitrat (Siklus Kreb’s). Ekuivalen pereduksi dari reaksi NADH + H+ yang terbentuk dalam glikolisis akan diambil oleh mitokondria untuk oksidasi melalui salah satu dari reaksi ulang alik (shuttle).

Kesimpulan:

Pada glikolisis aerob, energi yang dihasilkan terinci sebagai berikut:

hasil tingkat substrat :+ 4P

hasil oksidasi respirasi :+ 6P

jumlah :+10P

dikurangi untuk aktifasi glukosa dan fruktosa 6P : – 2P

+ 8P

Pada glikolisis anaerob, energi yang dihasilkan terinci sebagai berikut:

hasil tingkat substrat :+ 4P

hasil oksidasi respirasi :+ 0P

jumlah :+ 4P

dikurangi untuk aktifasi glukosa dan fruktosa 6P : – 2P

+ 2P

Oksidasi piruvat

Dalam jalur ini, piruvat dioksidasi (dekarboksilasi oksidatif) menjadi Asetil-KoA, yang terjadi di dalam mitokondria sel. Reaksi ini dikatalisir oleh berbagai enzim yang berbeda yang bekerja secara berurutan di dalam suatu kompleks multienzim yang berkaitan dengan membran interna mitokondria. Secara kolektif, enzim tersebut diberi nama kompleks piruvat dehidrogenase dan analog dengan kompleks µ-keto glutarat dehidrogenase pada siklus asam sitrat.

Jalur ini merupakan penghubung antara glikolisis dengan siklus Kreb’s. Jalur ini juga merupakan konversi glukosa menjadi asam lemak dan lemak dan sebaliknya dari senyawa non karbohidrat menjadi karbohidrat.

Rangkaian reaksi kimia yang terjadi dalam lintasan oksidasi piruvat adalah sebagai berikut:

1. Dengan adanya TDP (thiamine diphosphate), piruvat didekarboksilasi menjadi derivate hidroksietil tiamin difosfat terikat enzim oleh komponen kompleks enzim piruvat dehidrogenase. Produk sisa yang dihasilkan adalah CO2.

2. Hidroksietil tiamin difosfat akan bertemu dengan lipoamid teroksidasi, suatu kelompok prostetik dihidroksilipoil transasetilase untuk membentuk asetil lipoamid, selanjutnya TDP lepas.

3. Selanjutnya dengan adanya KoA-SH, asetil lipoamid akan diubah menjadi asetil KoA, dengan hasil sampingan berupa lipoamid tereduksi.

4. Siklus ini selesai jika lipoamid tereduksi direoksidasi oleh flavoprotein, yang mengandung FAD, pada kehadiran dihidrolipoil dehidrogenase. Akhirnya flavoprotein tereduksi ini dioksidasi oleh NAD+, yang akhirnya memindahkan ekuivalen pereduksi kepada rantai respirasi.

Piruvat + NAD+ + KoA à Asetil KoA + NADH + H+ + CO2

Siklus asam sitrat

Siklus ini juga sering disebut sebagai siklus Kreb’s dan siklus asam trikarboksilat dan berlangsung di dalam mitokondria. Siklus asam sitrat merupakan jalur bersama oksidasi karbohidrat, lipid dan protein.

Siklus asam sitrat merupakan rangkaian reaksi yang menyebabkan katabolisme asetil KoA, dengan membebaskan sejumlah ekuivalen hidrogen yang pada oksidasi menyebabkan pelepasan dan penangkapan sebagaian besar energi yang tersedia dari bahan baker jaringan, dalam bentuk ATP. Residu asetil ini berada dalam bentuk asetil-KoA (CH3-CO~KoA, asetat aktif), suatu ester koenzim A. Ko-A mengandung vitamin asam pantotenat.

Fungsi utama siklus asam sitrat adalah sebagai lintasan akhir bersama untuk oksidasi karbohidrat, lipid dan protein. Hal ini terjadi karena glukosa, asam lemak dan banyak asam amino dimetabolisir menjadi asetil KoA atau intermediat yang ada dalam siklus tersebut.

18-2

Siklus asam sitrat sebagai jalur bersama metabolisme karbohidrat, lipid dan protein

(dipetik dari: Murray dkk. Biokimia Harper)

Selama proses oksidasi asetil KoA di dalam siklus, akan terbentuk ekuivalen pereduksi dalam bentuk hidrogen atau elektron sebagai hasil kegiatan enzim dehidrogenase spesifik. Unsur ekuivalen pereduksi ini kemudian memasuki rantai respirasi tempat sejumlah besar ATP dihasilkan dalam proses fosforilasi oksidatif. Pada keadaan tanpa oksigen (anoksia) atau kekurangan oksigen (hipoksia) terjadi hambatan total pada siklus tersebut.

Enzim-enzim siklus asam sitrat terletak di dalam matriks mitokondria, baik dalam bentuk bebas ataupun melekat pada permukaan dalam membran interna mitokondria sehingga memfasilitasi pemindahan unsur ekuivalen pereduksi ke enzim terdekat pada rantai respirasi, yang bertempat di dalam membran interna mitokondria.

18-3

Lintasan detail Siklus Kreb’s (dipetik dari: Murray dkk. Biokimia Harper)

Reaksi-reaksi pada siklus asam sitrat diuraikan sebagai berikut:

1. Kondensasi awal asetil KoA dengan oksaloasetat membentuk sitrat, dikatalisir oleh enzim sitrat sintase menyebabkan sintesis ikatan karbon ke karbon di antara atom karbon metil pada asetil KoA dengan atom karbon karbonil pada oksaloasetat. Reaksi kondensasi, yang membentuk sitril KoA, diikuti oleh hidrolisis ikatan tioester KoA yang disertai dengan hilangnya energi bebas dalam bentuk panas dalam jumlah besar, memastikan reaksi tersebut selesai dengan sempurna.

Asetil KoA + Oksaloasetat + H2O à Sitrat + KoA

2. Sitrat dikonversi menjadi isositrat oleh enzim akonitase (akonitat hidratase) yang mengandung besi Fe2+ dalam bentuk protein besi-sulfur (Fe:S). Konversi ini berlangsung dalam 2 tahap, yaitu: dehidrasi menjadi sis-akonitat, yang sebagian di antaranya terikat pada enzim dan rehidrasi menjadi isositrat.

Reaksi tersebut dihambat oleh fluoroasetat yang dalam bentuk fluoroasetil KoA mengadakan kondensasi dengan oksaloasetat untuk membentuk fluorositrat. Senyawa terakhir ini menghambat akonitase sehingga menimbulkan penumpukan sitrat.

3. Isositrat mengalami dehidrogenasi membentuk oksalosuksinat dengan adanya enzim isositrat dehidrogenase. Di antara enzim ini ada yang spesifik NAD+, hanya ditemukan di dalam mitokondria. Dua enzim lainnya bersifat spesifik NADP+ dan masing-masing secara berurutan dijumpai di dalam mitokondria serta sitosol. Oksidasi terkait rantai respirasi terhadap isositrat berlangsung hampir sempurna melalui enzim yang bergantung NAD+.

Isositrat + NAD+ « Oksalosuksinat « µ–ketoglutarat + CO2 + NADH + H+

(terikat enzim)

Kemudian terjadi dekarboksilasi menjadi µ–ketoglutarat yang juga dikatalisir oleh enzim isositrat dehidrogenase. Mn2+ atau Mg2+ merupakan komponen penting reaksi dekarboksilasi. Oksalosuksinat tampaknya akan tetap terikat pada enzim sebagai intermediate dalam keseluruhan reaksi.

4. Selanjutnya µ–ketoglutarat mengalami dekarboksilasi oksidatif melalui cara yang sama dengan dekarboksilasi oksidatif piruvat, dengan kedua substrat berupa asam µ–keto.

µ–ketoglutarat + NAD+ + KoA à Suksinil KoA + CO2 + NADH + H+

Reaksi tersebut yang dikatalisir oleh kompleks µ–ketoglutarat dehidrogenase, juga memerlukan kofaktor yang idenstik dengan kompleks piruvat dehidrogenase, contohnya TDP, lipoat, NAD+, FAD serta KoA, dan menghasilkan pembentukan suksinil KoA (tioester berenergi tinggi). Arsenit menghambat reaksi di atas sehingga menyebabkan penumpukan µ–ketoglutarat.

5. Tahap selanjutnya terjadi perubahan suksinil KoA menjadi suksinat dengan adanya peran enzim suksinat tiokinase (suksinil KoA sintetase).

Suksinil KoA + Pi + ADP « Suksinat + ATP + KoA

Dalam siklus asam sitrat, reaksi ini adalah satu-satunya contoh pembentukan fosfat berenergi tinggi pada tingkatan substrat dan terjadi karena pelepasan energi bebas dari dekarboksilasi oksidatif µ–ketoglutarat cukup memadai untuk menghasilkan ikatan berenergi tinggi disamping pembentukan NADH (setara dengan 3~P.

6. Suksinat dimetabolisir lebih lanjut melalui reaksi dehidrogenasi yang diikuti oleh penambahan air dan kemudian oleh dehidrogenasi lebih lanjut yang menghasilkan kembali oksaloasetat.

Suksinat + FAD « Fumarat + FADH2

Reaksi dehidrogenasi pertama dikatalisir oleh enzim suksinat dehidrogenase yang terikat pada permukaan dalam membrane interna mitokondria, berbeda dengan enzim-enzim lain yang ditemukan pada matriks. Reaksi ini adalah satu-satunya reaksi dehidrogenasi dalam siklus asam sitrat yang melibatkan pemindahan langsung atom hydrogen dari substrat kepada flavoprotein tanpa peran NAD+. Enzim ini mengandung FAD dan protein besi-sulfur (Fe:S). Fumarat terbentuk sebagai hasil dehidrogenasi. Fumarase (fumarat hidratase) mengkatalisir penambahan air pada fumarat untuk menghasilkan malat.

Fumarat + H2O « L-malat

Enzim fumarase juga mengkatalisir penambahan unsure-unsur air kepada ikatan rangkap fumarat dalam konfigurasi trans.

Malat dikonversikan menjadi oksaloasetat dengan katalisator berupa enzim malat dehidrogenase, suatu reaksi yang memerlukan NAD+.

L-Malat + NAD+ « oksaloasetat + NADH + H+

Enzim-enzim dalam siklus asam sitrat, kecuali alfa ketoglutarat dan suksinat dehidrogenase juga ditemukan di luar mitokondria. Meskipun dapat mengkatalisir reaksi serupa, sebagian enzim tersebut, misalnya malat dehidrogenase pada kenyataannya mungkin bukan merupakan protein yang sama seperti enzim mitokondria yang mempunyai nama sama (dengan kata lain enzim tersebut merupakan isoenzim).

Energi yang dihasilkan dalam siklus asam sitrat

Pada proses oksidasi yang dikatalisir enzim dehidrogenase, 3 molekul NADH dan 1 FADH2 akan dihasilkan untuk setiap molekul asetil-KoA yang dikatabolisir dalam siklus asam sitrat. Dalam hal ini sejumlah ekuivalen pereduksi akan dipindahkan ke rantai respirasi dalam membrane interna mitokondria (lihat kembali gambar tentang siklus ini).

Selama melintasi rantai respirasi tersebut, ekuivalen pereduksi NADH menghasilkan 3 ikatan fosfat berenergi tinggi melalui esterifikasi ADP menjadi ATP dalam proses fosforilasi oksidatif. Namun demikian FADH2 hanya menghasilkan 2 ikatan fosfat berenergi tinggi. Fosfat berenergi tinggi selanjutnya akan dihasilkan pada tingkat siklus itu sendiri (pada tingkat substrat) pada saat suksinil KoA diubah menjadi suksinat.

Dengan demikian rincian energi yang dihasilkan dalam siklus asam sitrat adalah:

1. Tiga molekul NADH, menghasilkan : 3 X 3P = 9P

2. Satu molekul FADH2, menghasilkan : 1 x 2P = 2P

3. Pada tingkat substrat = 1P

Jumlah = 12P

Satu siklus Kreb’s akan menghasilkan energi 3P + 3P + 1P + 2P + 3P = 12P.

Kalau kita hubungkan jalur glikolisis, oksidasi piruvat dan siklus Kreb’s, akan dapat kita hitung bahwa 1 mol glukosa jika dibakar sempurna (aerob) akan menghasilkan energi dengan rincian sebagai berikut:

1. Glikolisis : 8P

2. Oksidasi piruvat (2 x 3P) : 6P

3. Siklus Kreb’s (2 x 12P) : 24P

Jumlah : 38P

Glikogenesis

Tahap pertama metabolisme karbohidrat adalah pemecahan glukosa (glikolisis) menjadi piruvat. Selanjutnya piruvat dioksidasi menjadi asetil KoA. Akhirnya asetil KoA masuk ke dalam rangkaian siklus asam sitrat untuk dikatabolisir menjadi energi.

Proses di atas terjadi jika kita membutuhkan energi untuk aktifitas, misalnya berpikir, mencerna makanan, bekerja dan sebagainya. Jika kita memiliki glukosa melampaui kebutuhan energi, maka kelebihan glukosa yang ada akan disimpan dalam bentuk glikogen. Proses anabolisme ini dinamakan glikogenesis.

Glikogen merupakan bentuk simpanan karbohidrat yang utama di dalam tubuh dan analog dengan amilum pada tumbuhan. Unsur ini terutama terdapat didalam hati (sampai 6%), otot jarang melampaui jumlah 1%. Akan tetapi karena massa otot jauh lebih besar daripada hati, maka besarnya simpanan glikogen di otot bisa mencapai tiga sampai empat kali lebih banyak. Seperti amilum, glikogen merupakan polimer µ-D-Glukosa yang bercabang.

Glikogen otot berfungsi sebagai sumber heksosa yang tersedia dengan mudah untuk proses glikolisis di dalam otot itu sendiri. Sedangkan glikogen hati sangat berhubungan dengan simpanan dan pengiriman heksosa keluar untuk mempertahankan kadar glukosa darah, khususnya pada saat di antara waktu makan. Setelah 12-18 jam puasa, hampir semua simpanan glikogen hati terkuras habis. Tetapi glikogen otot hanya terkuras secara bermakna setelah seseorang melakukan olahraga yang berat dan lama.

Rangkaian proses terjadinya glikogenesis digambarkan sebagai berikut:

1. Glukosa mengalami fosforilasi menjadi glukosa 6-fosfat (reaksi yang lazim terjadi juga pada lintasan glikolisis). Di otot reaksi ini dikatalisir oleh heksokinase sedangkan di hati oleh glukokinase.

2. Glukosa 6-fosfat diubah menjadi glukosa 1-fosfat dalam reaksi dengan bantuan katalisator enzim fosfoglukomutase. Enzim itu sendiri akan mengalami fosforilasi dan gugus fosfo akan mengambil bagian di dalam reaksi reversible yang intermediatnya adalah glukosa 1,6-bifosfat.

Enz-P + Glukosa 6-fosfat «Enz + Glukosa 1,6-bifosfat « Enz-P + Glukosa 1-fosfat

3. Selanjutnya glukosa 1-fosfat bereaksi dengan uridin trifosfat (UTP) untuk membentuk uridin difosfat glukosa (UDPGlc). Reaksi ini dikatalisir oleh enzim UDPGlc pirofosforilase.

UTP + Glukosa 1-fosfat « UDPGlc + PPi

20-2

Uridin difosfat glukosa (UDPGlc) (dipetik dari: Murray dkk. Biokimia Harper)

4. Hidrolisis pirofosfat inorganic berikutnya oleh enzim pirofosfatase inorganik akan menarik reaksi kea rah kanan persamaan reaksi

5. Atom C1 pada glukosa yang diaktifkan oleh UDPGlc membentuk ikatan glikosidik dengan atom C4 pada residu glukosa terminal glikogen, sehingga membebaskan uridin difosfat. Reaksi ini dikatalisir oleh enzim glikogen sintase. Molekul glikogen yang sudah ada sebelumnya (disebut glikogen primer) harus ada untuk memulai reaksi ini. Glikogen primer selanjutnya dapat terbentuk pada primer protein yang dikenal sebagai glikogenin.

UDPGlc + (C6)n à UDP + (C6)n+1

Glikogen Glikogen

Residu glukosa yang lebih lanjut melekat pada posisi 1à4 untuk membentuk rantai pendek yang diaktifkan oleh glikogen sintase. Pada otot rangka glikogenin tetap melekat pada pusat molekul glikogen, sedangkan di hati terdapat jumlah molekul glikogen yang melebihi jumlah molekul glikogenin.

6. Setelah rantai dari glikogen primer diperpanjang dengan penambahan glukosa tersebut hingga mencapai minimal 11 residu glukosa, maka enzim pembentuk cabang memindahkan bagian dari rantai 1à4 (panjang minimal 6 residu glukosa) pada rantai yang berdekatan untuk membentuk rangkaian 1à6 sehingga membuat titik cabang pada molekul tersebut. Cabang-cabang ini akan tumbuh dengan penambahan lebih lanjut 1àglukosil dan pembentukan cabang selanjutnya. Setelah jumlah residu terminal yang non reduktif bertambah, jumlah total tapak reaktif dalam molekul akan meningkat sehingga akan mempercepat glikogenesis maupun glikogenolisis.

Tahap-tahap perangkaian glukosa demi glukosa digambarkan pada bagan berikut.

Biosintesis glikogen (dipetik dari: Murray dkk. Biokimia Harper)

Tampak bahwa setiap penambahan 1 glukosa pada glikogen dikatalisir oleh enzim glikogen sintase. Sekelompok glukosa dalam rangkaian linier dapat putus dari glikogen induknya dan berpindah tempat untuk membentuk cabang. Enzim yang berperan dalam tahap ini adalah enzim pembentuk cabang (branching enzyme).

Glikogenolisis

Jika glukosa dari diet tidak dapat mencukupi kebutuhan, maka glikogen harus dipecah untuk mendapatkan glukosa sebagai sumber energi. Proses ini dinamakan glikogenolisis. Glikogenolisis seakan-akan kebalikan dari glikogenesis, akan tetapi sebenarnya tidak demikian. Untuk memutuskan ikatan glukosa satu demi satu dari glikogen diperlukan enzim fosforilase. Enzim ini spesifik untuk proses fosforolisis rangkaian 1à4 glikogen untuk menghasilkan glukosa 1-fosfat. Residu glukosil terminal pada rantai paling luar molekul glikogen dibuang secara berurutan sampai kurang lebih ada 4 buah residu glukosa yang tersisa pada tiap sisi cabang 1à6.

(C6)n + Pi à (C6)n-1 + Glukosa 1-fosfat

Glikogen Glikogen

Glukan transferase dibutuhkan sebagai katalisator pemindahan unit trisakarida dari satu cabang ke cabang lainnya sehingga membuat titik cabang 1à6 terpajan. Hidrolisis ikatan 1à6 memerlukan kerja enzim enzim pemutus cabang (debranching enzyme) yang spesifik. Dengan pemutusan cabang tersebut, maka kerja enzim fosforilase selanjutnya dapat berlangsung.

debranchingenzym

Tahap-tahap glikogenolisis (dipetik dari: Murray dkk. Biokimia Harper)

Glukoneogenesis

Glukoneogenesis terjadi jika sumber energi dari karbohidrat tidak tersedia lagi. Maka tubuh adalah menggunakan lemak sebagai sumber energi. Jika lemak juga tak tersedia, barulah memecah protein untuk energi yang sesungguhnya protein berperan pokok sebagai pembangun tubuh.

Jadi bisa disimpulkan bahwa glukoneogenesis adalah proses pembentukan glukosa dari senyawa-senyawa non karbohidrat, bisa dari lipid maupun protein.

Secara ringkas, jalur glukoneogenesis dari bahan lipid maupun protein dijelaskan sebagai berikut:

1. Lipid terpecah menjadi komponen penyusunnya yaitu asam lemak dan gliserol. Asam lemak dapat dioksidasi menjadi asetil KoA. Selanjutnya asetil KoA masuk dalam siklus Kreb’s. Sementara itu gliserol masuk dalam jalur glikolisis.

2. Untuk protein, asam-asam amino penyusunnya akan masuk ke dalam siklus Kreb’s.

Ringkasan jalur glukoneogenesis (dipetik dari: Murray dkk. Biokimia Harper)


Lintasan metabolisme karbohidrat, lipid dan protein. Perhatikan jalur glukoneogenesis yaitu masuknya lipid dan asam amino ke dalam lintasan (dipetik dari: Murray dkk. Biokimia Harper)

Glukoneogenesis dari bahan protein. Dalam hal ini protein telah dipecah menjadi berbagai macam asam amino (dipetik dari: Murray dkk. Biokimia Harper)





Vitamin B

26 12 2008

VITAMIN B
( Rahmat Muliawan)

vitamin_b_komplex_f

Vitamin B merupakan jenis vitamin yang larut dalam air. Vitamin B merupakan kofaktor dalam berbagai reaksi enzimatik yang terdapat di dalam tubuh kita. Vitamin B yang penting bagi nutrisi manusia adalah :
• Tiamin ( vitamin B 1 ).
• Riboflavin ( vitamin B2 ).
• Niasin (asam nikotinat ,nikotinamida, vitamin B3 )
• Asam pantotenat ( vitamin B5 ).
• Vitamin B6 ( piridoksin ,pridoksal ,piridoksamin ).
• Biotin.
• Vitamin B12 (kobalamin ).
• Asam folat.
Karena kelarutannya dalam air ,kelebihan vitamin ini akan diekskresikan ke dalam urin dan dengan demikian jarang tertimbun dalam konsentrasi yang toksik.Penyimpanan vitamin B kompleks bersifat terbatas (kecuali kobalamin) sebagai akibatnya vitamin B kompleks harus dikomsumsi secara teratur.


1.Tiamin ( Vitamin B1 )

Tiamin tersusun dari pirimidin tersubsitusi yang dihubungkan oleh jembatan metilen dengan tiazol tersubsitusi.

Bentuk aktif dari tiamin adalah tiamin difosfat ,di mana reaksi konversi tiamin menjadi tiamin difosfat tergantung oleh enzim tiamin difosfotransferase dan ATP yang terdapat di dalam otak dan hati.Tiamin difosfat berfungsi sebagai koenzim dalam sejumlah reaksi enzimatik dengan mengalihkan unit aldehid yang telah diaktifkan yaitu pada reaksi :
1. Dekarboksilasi oksidatif asam-asam α – keto ( misalnya α- ketoglutarat, piruvat, dan analog α – keto dari leusin isoleusin serta valin).
2. Reaksi transketolase (misalnya dalam lintasan pentosa fosfat).
Semua reaksi ini dihambat pada defisiensi tiamin .Dalam setiap keadaan tiamin. Difosfat menghasilkan karbon reaktif pada tiazol yang membentuk karbanion, yang kemudian ditambahkan dengan bebas kepada gugus karbonil,misalnya piruvat.Senyawa adisi kemudian mengalami dekarboksilasi dengan membebaskan CO2.Reaksi ini terjadi dalam suatu kompleks multienzim yang dikenal sebagai kompleks piruvat dehidrogenase.Dekarboksilasi oksidatif α – ketoglutarat menjadi suksinil ko-A dan CO2 dikatalisis oleh suatu kompleks enzim yang strukturnya sangat serupa dengan struktur kompleks piruvat dehidrogenase.

Defisiensi tiamin
Pada manusia yang mengalami defisiensi tiamin mengakibatkan reaksi yang tergantung pada tiamin difosfat akan dicegah atau sangat dibatasi ,sehingga menimbulkan penumpukan substrat untuk reaksi tersebut,misalnya piruvat ,gula pento dan derivat α- ketoglutarat dari asam amino rantai bercabang leusin, isoleusin serta valin .Tiamin didapati hampir pada semua tanaman dan jaringan tubuh hewan yang lazim digunakan sebagai makanan , tetapi kandungannya biasanya kecil .Biji-bijian yang tidak digiling sempurna dan daging merupakan sumber tiamin yang baik. Penyakit beri-beri disebabkan oleh diet kaya karbohidrat rendah tiamin,misalnya beras giling atau makanan yang sangat dimurnikan seperti gula pasir dan tepung terigu berwarna putih yang digunakan sebagai sumber makanan pokok.
Gejala dini defisiensi tiamin berupa neuropati perifer, keluhan mudah capai, dan anoreksia yang menimbulkan edema dan degenerasi kardiovaskuler, neurologis serta muskuler. Encefalopati Wernicke merupakan suatu keadaan yang berhubungan dengan defisiensi tiamin yangsering ditemukan diantara para peminum alcohol kronis yang mengkomsumsi hanya sedikit makanan lainnya.Ikan mentah tertentu mengandung suatu enzim (tiaminase ) yang labil terhadap panas,enzim ini merusak tiamin tetapi tidak dianggap sebagai masalahyang penting dalam nutrisi manusia.
2. Riboflavin ( Vitamin B2 )
Riboflavin terdiri atas sebuah cincin isoaloksazin heterosiklik yang terikat dengan gula alcohol,ribitol.Jenis vitamin ini berupa pigmen fluoresen berwarna yang relatif stabil terhadap panas tetapi terurai dengan cahaya yang visible.
Bentuk aktif riboflavin adalah flavin mononukleatida ( FMN ) dan flavin adenin dinukleotida ( FAD ). FMN dibentuk oleh reaksi fosforilasi riboflavin yang tergantung pada ATP sedangkan FAD disintesis oleh reaksi selanjutnya dengan ATP dimana bagian AMP dalam ATP dialihkan kepada FMN.
FMN dan FAD berfungsi sebagai gugus prostetik enzim oksidoreduktase,di mana gugus prostetiknya terikat erat tetapi nonkovalen dengan apoproteinnya.Enzim-enzim ini dikenal sebagai flavoprotein . Banyak enzim flavoprotein mengandung satu atau lebih unsur metal seperti molibneum serta besi sebagai kofaktor esensial dan dikenal sebagai metaloflavoprotein.
Enzim-enzim flavoprotein tersebar luas dan diwakili oleh beberapa enzim oksidoreduktase yang penting dalam metabolisma mamalia,misalnya oksidase asam α amino dalam reaksi deaminasi asam amino , santin oksidase dalam penguraian purin ,aldehid dehidrogenase,gliserol 3 fosfat dehidrogenase mitokondria dalam proses pengangkutan sejumlah ekuivalen pereduksi dari sitosol ke dalam mitokondria, suksinat dehidrogenase dalam siklus asam sitrat, Asil ko A dehidrogenase serta flavoprotein pengalih elektron dalam oksidasi asam lemak dan dihidrolipoil dehidrogenase dalam reaksi dekarboksilasi oksidatif piruvat serta α- ketoglutarat, NADH dehidrogenase merupakan komponen utama rantai respiratorik dalam mitokondria. Semua sistem enzim ini akan terganggu pada defisiensi riboflavin.
Dalam peranannya sebagai koenzim, flavoprotein mengalami reduksi reversible cincin isoaloksazin hingga menghasilkan bentuk FMNH2 dan FADH2.

Defisiensi Riboflavin
Bila ditinjau dari fungsi metaboliknya yang luas, kita akan heran melihat defisiensi riboflavin tidak menimbulkan keadaan yang bisa membawa kematian. Namun demikian kalau terjadi defisiensi tiamin, berbagai gejala seperti stomatitis angularis, keilosis,glositis,sebore dan fotofobia.
Riboflavin disintesis dalam tanaman dan mikroorganisme, namun tidak dibuat dalam tubuh mamalia. Ragi, hati dan ginjal merupakan sumber riboflavin yang baik dan vitamin ini diabsorbsi dalam intestinum lewat rangkaian reaksifosforilasi – defosforilasi di dalam mukosa . Berbagai hormon ( misalnya hormon tiroid dan ACTH ), obat-obatan (misalnya klorpromazin,suatu inhihibitor kompetitif ) dan factor-faktor nutrisi mempengariuhi konversi riboflavin menjadi bentuk-bentuk kofaktornya . Karena sensitivitasnya terhadap cahaya, defisiensi riboflavin dapat terjadi pada bayi yang baru lahir dengan hiperbilirubinemia yang mendapat fototerapi.

3.Niasin ( Vitamin B3 )
Niasin merupakan nama generik untuk asam nikotinat dan nikotinamida yang berfungsi sebagai sumber vitamin tersebut dalam makanan. Asam nikotinat merupakan derivat asam monokarboksilat dari piridin.

Bentuk aktif sari niasin adalah Nikotinamida Adenin Dinukleotida (NAD+) dan Nikotinamida Adenin Dinukleotida Fosfat ( NADP+).
Nikotinat merupakan bentuk niasin yang diperlukan untuk sintesis NAD+ dan NADP+ oleh enzim-enzim yangterdapat pada sitosol sebagian besar sel.Karena itu,setiap nikotinamida dalam makanan, mula-mula mengalami deamidasi menjadi nikotinat. Dalam sitosol nikotinat diubah menjadidesamido NAD+ melalui reaksi yang mula-mula dengan 5- fosforibosil –1-pirofosfat ( PRPP ) dan kemudian melalui adenilasi dengan ATP. Gugus amino pada glutamin akan turut membentuk koenzim NAD +. Koenzim ini bisa mengalami fosforilasi lebih lanjut sehingga terbentuk NADP+.
Nukleotida nikotinmida mempunyai peranan yang luas sebagai koenzim pada banyak enzim dehidrogenase yang terdapat di dalam sitosol ataupun mitokondria. Dengan demikian vitamin niasin merupakan komponen kunci pada banyak lintasan metabolic yang mengenai metabolisme karbohidrat ,liid serta asam amino. NAD+ dan NADP+ merupakan koenzim pada banyak enzim oksidorduktase. Enzim-enzim dehidrogenase yang terikat dengan NAD mengkatalisis reaksi oksidoreduksi dalam lintasan oksidatif misalnya siklus asam sitrat, sedangkan enzim-enzim dehidrogenase yang terikat dengan NADP ditemukan dalam lintasan yang berhubungan dengan sintesis reduktif misalnya lintasan pentosa fosfat.


Defisiensi Niasin

Kekurangan niasin menimbulkan sindroma defisiensi pellagra, gejalanya, mencakup penurunan berat badan, berbagai kelainan pencernaan, dermatitis, depresi dan demensia. Niasin ditemukan secara luas dalam sebagian besar makanan hewani dan nabati. Asam amino essensial triptofan dapat diubah menjadi niasin (NAD+) dimana setiap 60 mg triptofan dapat dihasilkan 1 mg niasin. Terjadinya defisiensi niasin apabila kandungan makanan kurang mengandung niasin dan triptofan . Tetapi makanan dengan kandungan leusin yang tinggi dapat menimbulkan defisiensi niasin karena kadar leusin yang tinggi dalam diet dapat menghambat kuinolinat fosforibosi transferase yaitu suatu enzim kunci dalam proses konversi triptofa menjadi NAD+. Piridoksal fosfat yang merupakan bentuk aktif dari vitamin B6 juga terlibat sebagai kofaktor dalam sintesis NAD+ dari triptofan. Sehingga defisiensi vitamin B6 dapat mendorong timbulnya defisiensi niasin.

4.Asam Pantotenat ( vitamin B5)
Asam pantotenat dibentuk melalui penggabungan asam pantoat dengan alanin. Asam pantoneat aktif adalah Koenzim A (Ko A ) dan Protein Pembawa Asil (ACP). Asam pantoneat dapat diabsorbsi dengan mudah dalam intestinum dan selanjutnya mengalami fosforilasi oleh ATP hingga terbentuk 4′- fosfopantoneat. penambahan sistein dan pengeluaran gugus karboksilnya mengakibatkan penambahan netto tiotanolamina sehingga menghasilkan 4′ – fosfopantein, yakni gugus prostetik pada ko A dan ACP. Ko A mengandung nukleotida adenin. Dengan demikian 4′ –fosfopantein akan mengalami adenilasi oleh ATP hingga terbentuk defosfo koA. Fosforilasi akhir terjadi pada ATP dengan menambahkan gugus fosfat pada gugus 3 – hidroksil dalam moitas ribose untuk menghasilkan ko A.

Defisiensi Asam pantoneat
Kekurangan asam pantoneat jarang terjadi karena asam pantoneat terdapat secara lluas dalam makanan,khususnya dalam jumlah yang berlimpah dalam jaringan hewan,sereal utuh dan kacang-kacangan. Namun demikian , burning foot syndrom pernah terjadi diantara para tawanan perang akibat defisiensi asam pantoneat dan berhubungan dengan menurunnya kemampuan asetilasi.

5.Vitamin B6
Vitamin B6 terdiri atas derivat piridin yang berhubungan erat yaitu piridoksin, piridoksal serta piridoksamin dan derivat fosfatnya yang bersesuaian.

Bentuk aktif dari vitamin B6 adalah piridoksal fosfat, di mana semua bentuk vitamin B6 diabsorbsi dari dalam intestinum, tetapi hidrolisis tertentu senyawa-senyawa ester fosfat terjadi selama proses pencernaan. Piridoksal fosfat merupakan bentuk utama yang diangkut dalam plasma. Sebagian besar jaringan mengandung piridoksal kinase yang dapat mengkatalisis reaksi fosforilasi oleh ATP terhadap bentuk vitamin yang belum terfosforilasi menjadi masing- masing derivat ester fosfatnya. Piridoksal fosfat merupakan koenzim pada beberapa enzim dalam metabolisme asam aimno pada proses transaminasi, dekarboksilasi atau aktivitas aldolase. Piridoksal fosfat juga terlibat dalam proses glikogenolisis yaitu pada enzim yang memperantarai proses pemecahan glikogen.
Defisiensi Vitamin B6
Kekurangan vitamin B6 jarang terjadi dan setiap defisiensi yang terjadi merupakan bagian dari defisiensi menyeluruh vitamin B kompleks. Namun defisiensi vitamin B6 dapat terjadi selama masa laktasi , pada alkoholik dan juga selama terapi isoniazid.
Hati, ikan mackerl, alpukat, pisang, daging, sayuran dan telur merupakan sumber vitamin B6 yang terbaik.

6.Biotin
Biotin merupakan derivat imidazol yang tersebar luas dalam berbagai makanan alami. Karena sebagian besar kebutuhan manusia akan biotin dipenuhi oleh sintesis dari bakteri intestinal, defisiensi biotin tidak disebabkan oleh defisiensi dietarik biasa tetapi oleh cacat dalam penggunaan. Biotin merupakan koenzim pada berbagai enzim karboksilase.

Defisiensi biotin
Gejala defisiensi biotin adalah depresi, halusinasi, nyeri otot dan dermatitis. Putih telur mengandung suatu protein yang labil terhadap panas yakni avidin. Protein ini akan bergabung kuat dengan biotin sehingga mencegah penyerapannya dan menimbulkan defisiensi biotin. Komsumsi telur mentah dapat menyebabkan defisiensi biotin. Tidak adanaya enzim holokarboksilase sintase yang melekatkan biotin pada residu lisin apoenzim karboksilat, juga menyebabkan gejala defisiensi biotin, termasuk akumulasi substratdari enzim-enzim yang tergantung pada biotin ( piruvat karboksilase, asetyl ko A karboksilase, propionil ko A karboksilase dan ß – metilkrotonil ko A ). Pada sebagian kasus , anak-anak dengan defisiensi ini juga menderita penyakit defisiesi kekebalan.

7. Kobalamin ( Vitamin B12 )
Vitamin B12 (kobalamin) mempunyai struktur cincin yang kompleks (cincin corrin) dan serupa dengan cincin porfirin, yang pada cincin ini ditambahkan ion kobalt di bagian tengahnya. Vitamin B12 disintesis secara eksklusif oleh mikroorganisme. Dengan demikian, vitamin B12 tidak terdapat dalam tanaman kecuali bila tanaman tersebut terkontaminasi vitamin B12 tetapi tersimpan pada binatang di dalam hati temapat vitamin B12 ditemukan dalam bentuk metilkobalamin,adenosilkobalamin, dan hidroksikobalamin.
Absorbsi intestinal vitamin B12 terjadi dengan perantaraan tempat-tempat reseptor dalam ileum yang memerlukan pengikatan vitamin B12, suatu glikoprotein yang sangat spesifik yaitu faktor intrinsik yang disekresi sel-sel parietal pada mukosa lambung.. Setelah diserap vitamin B12 terikat dengan protein plasma transkobalamin II untuk pengangkutan ke dalam jaringan. Vitamin B12 disimpan dalam hati terikat dengan transkobalamin I. Koenzim vitamin B12 yang aktif adalah metilkobalamin dan deoksiadenosilkobalamin. Metilkobalamin merupakan koenzim dalam konversi Homosistein menjadi metionin dan juga konversi Metiltetrahidrofolat menjadi tetrafidrofolat. Deoksiadenosilkobalamin adalah koenzim untuk konversi metilmalonil Ko A menjadi suksinil Ko A.

Defisiensi vitamin B12
Kekurangan atau defisiensi vitamin B12 menyebabkan anemia megaloblastik. Karena defisiensi vitamin B12 akan mengganggu reaksi metionin sintase. Anemia terjadi akibat terganggunya sintesis DNA yang mempengaruhi pembentukan nukleus pada ertrosit yang baru . Keadaan ini disebabkan oleh gangguan sintesis purin dan pirimidin yang terjadi akibat defisiensi tetrahidrofolat. Homosistinuria dan metilmalonat asiduria juga terjadi .Kelainan neurologik yang berhubungan dengan defisiensi vitamin B12 dapat terjadi sekunder akibat defisiensi relatif metionin.

8.Asam Folat
Nama generiknya adalah folasin . Asam folat ini terdiri dari basa pteridin yang terikat dengan satu molekul masing-masing asam P- aminobenzoat acid (PABA ) dan asam glutamat. Tetrahidrofolat merupakan bentuk asam folat yang aktif. Makanan yang mengandung asam folat akan dipecah oleh enzim-enzim usus spesifik menjadi monoglutamil folat agar bisa diabsorbsi . kemudian oleh adanya enzim folat reduktase sebagian besar derivat folat akan direduksi menjadi tetrahidrofolat dalam sel intestinal yang menggunakan NADPH sebagai donor ekuivalen pereduksi.

Tetrahidrofolat ini merupakan pembawa unit-unit satu karbon yang aktif dalam berbagai reaksi oksidasi yaitu metil, metilen, metenil, formil dan formimino. Semuanya bisa dikonversikan.
Serin merupakan sumber utama unit satu karbon dalam bentuk gugus metilen yang secara reversible beralih kepada tetrahidrofolat hingga terbentuk glisin dan N5, N10 – metilen – H4folat yang mempunyai peranan sentral dalam metabolisme unit satu karbon. Senyawa di atas dapat direduksi menjadi N5 – metil – H4folat yang memiliki peranan penting dalam metilasi homosistein menjadi metionin dengan melibatkan metilkobalamin sebagai kofaktor.

Defisiensi asam folat
Defisiensi atau kekurangan asam folat dapat menyebabkan anemia megaloblastik karena terganggunya sintesis DNA dan pembentukan eritrosit

SUMBER LAIN : WIKIPEDIA VITAMIN B





isositrat dehidrogenase

24 12 2008

Enzim isositrat dehidrogenase adalah suatu molekul tetramer dan peptida subunit enzim ini diperlukan untuk kegiatan enzimatik. Reaksi yang dikatalisis ialah :

Isositrat + NAD+ -><- Oksalosuksinat (terikat enzim) -><-a–ketoglutarat + CO2 + NADH + H+

nsp-protein-2-15-2_42

Isositrat ( substrat ) mengalami dehidrogenasi membentuk oksalosuksinat ( produk 1 ) dengan adanya enzim isositrat dehidrogenase
NAD+ dan ADP adalah efektor alosterik positif, sedangkan NADH dan ATP adalah efektor alosterik negative.
NAD+ adalah koenzim yang diperlukan, tetapi ia juga memperbesar dampak ADP dalam meningkatkan kecepatan reaksi. ADP menambah afinitas enzim terhadap NAD+, demikian pula sebaliknya.
Kemudian terjadi dekarboksilasi menjadi –ketoglutarat ( produk 2 )yang juga dikatalisir oleh enzim isositrat dehidrogenase. Mn2+ atau Mg2+ merupakan komponen penting reaksi dekarboksilasi. Oksalosuksinat tampaknya akan tetap terikat pada enzim sebagai intermediate dalam keseluruhan reaksi.